MV AGUSTA F4 1000 S - S1+1 - R - R1+1 - 312 R - R1+1 - AGO - MT - SENNA

Workshop engine manual
Statement

This manual, to be used by the MV Agusta authorised workshops has been realised with the purpose of assisting authorised personnel in maintenance and repairs operations of the motorcycle. The knowledge of technical data herein noted, determines the complete professional training of the technician.
With purpose of making the reading of this manual immediately comprehensible, the paragraphs have been aligned with detailed illustrations that highlight the argument dealt with.

Useful advice

To prevent any problems and to reach an excellent final result, MV Agusta recommends keeping to the following guidelines:

- In the case of an eventual repair, evaluate the client’s impressions who states that there is an abnormal functioning of the motorcycle and to formulate the right questions to clarify the symptoms of the problem.

- Clearly diagnose the cause of the abnormality. The basic fundamental theories can be absorbed by reading this manual that must necessarily be integrated to the personal experience and the participation of training courses that are periodically organised by MV Agusta.

- Rationally plan the repair to avoid slack periods, e.g. the collection of spare parts, the preparation of tools and equipment, etc.

- To reach the part to be repaired limiting the work to the essential operations. With regards to this, a valid help would be to consult this manual with regards to the sequences of removal demonstrated in this manual.

Informative note

MV Agusta S.p.A. is committed to a policy of continuous improvement of their products. For this reason, there could be slight differences between that which is written here and the motorcycle on which repairs and/or maintenance are about to be carried out. MV Agusta models are exported to many countries where different norms in relation to the highway code and homologation procedures are valid. Hoping that you will comprehend these problems, MV Agusta S.p.A. reserves the right to make modifications to its products and technical documentation at any moment and without prior announcement.

Respect and defend the environment

Everything that we do has repercussions on the entire planet and its resources. MV Agusta, wanting to protect the interest of the people, would like to make the client and the technicians of the technical assistance centres aware and to adopt modalities of use of the motorcycle and the dispose of its parts in full respect of the norms in force in terms of environmental pollution, disposal and the recycling of waste.
GENERAL DESCRIPTION

ENGINE F4 1000 S - S1+1 - R - R1+1 - 312 R - R1+1 - AGO - MT - SENNA
SUMMARY

HOW TO CONSULT THIS MANUAL .. PAGE 3
THE PURPOSE OF THIS MANUAL ... PAGE 3
GLOSSARY AND SYMBOLS ... PAGE 4
RIGHT HAND AND LEFT HAND STANDARD PAGE 6
SAFETY .. PAGE 7
OBSERVATIONS .. PAGE 9
INDEX .. PAGE 9
OPERATIVE TECHNICAL SPECIFICATIONS PAGE 10
HOW TO CONSULT THIS MANUAL

Order of the subjects
This manual is divided into chapters that deal with the sub-groups of the motorcycle. To quickly find the chapter required, the pages of each chapter are marked with a reference mark aligned to the relative item in the general index.

Display of the operations
The operations of disassembly, assembly, removal and control are presented with the help of illustrations (designs and photographs). The illustrations contain symbols that indicate the procedure, special tools and other information. See the symbols lists for their significance. The procedures are described step after step.

EXAMPLE
Steering pin tightening
Screw in the steering pin flange ring, without tightening.
This operation must be done manually.
Check that the steering base is at the end of its travel, to the right.
Using the special tool N. 800091645, tighten the ring (1) by rotating it 10° calculated approximately as one third of the movement between the two holes of the ring (2) of the steering head (see the figure).

PURPOSE OF THE MANUAL
Principally, this manual has been written for MV Agusta dealers and qualified mechanics. It is not possible to document all the knowledge necessary for a mechanic in a manual. Those who utilise it must have a basic knowledge of mechanical concepts and the inherent procedures in the techniques of repairing motorcycles. Without this knowledge, the maintenance and repair operations can render the motorcycle unsafe for use.

Updates
MV Agusta S.p.A. is committed to a policy of continuous updating of the models produced. The modifications and significant changes to the specifications and the procedures will be communicated to the official dealers and will appear in future editions of this manual.

All information, instructions and technical data included in this manual are based upon information on the product updated at the moment of going to print. MV Agusta S.p.A. reserves the right to carry out changes at any moment without prior notice and without incurring any obligation.
During this kind of procedure inflammable vapours might develop and metallic parts might be expelled at high velocity. Thus, it is necessary to:
- work far from exposed flames and sparks;
- wear protective clothing;
- wear protective eye-glasses.

In case it should be necessary, due to wear, to substitute a particular, relative to a cylinder, we strongly suggest that you check and if necessary, substitute the same particular in all of the cylinders for more satisfying results.
In particular, we recommend that at the same time you substitute:
- pistons with relative elastic bands and piston pins;
- valves with relative springs, semi-cones, disks and grazings;
- Valve guides with relative valves, springs, semi-cones and grazings;
- bed bearing;
- whatever else undergoes uniform wear, aside from the position of the relative cylinder.

In order to allow the motor to function under the best conditions, it is necessary that all of the couplings are within the accepted tolerances established. A tight coupling, in fact, cause for seizure as soon as the organs in motion begin to heat, while a loose coupling is cause for vibrations which accelerates wear on the particulars in motion.
Use the recommended oil.

Use the recommended grease.

Use the recommended brake fluid.

Use the recommended suspension fluid.

Use the recommended coolant.

Use the recommended thread-locking fluid.

Use the recommended sealant.

Use the recommended adhesive.

Carry out accurate cleaning.

Use new components.

Substitute the component.

Do not leave litter about.
RIGHT HAND AND LEFT HAND STANDARD

To clarify the right hand and left hand standard that is used in this manual, herewith below is a diagram of the motorcycle and the engine against which are indicated the right and left sides.
SAFETY

ATTENTION
The information contained in this paragraph is fundamental so that the operations carried out on the motorcycle can be conducted with minimum risk to the mechanic.

Carbon Monoxide
- Exhaust gases contain carbon monoxide (CO) that is poisonous. Carbon monoxide can cause the loss of consciousness and death.
- If it is necessary to switch on the engine, check that the environment is well ventilated. Never switch on the engine in an enclosed environment.
- Switching on the engine can only be carried out in an enclosed environment when there are the appropriate devices for the evacuation of exhaust gases.

Petrol
- Petrol is extremely inflammable and under certain conditions can be explosive.
- Keep sources of heat, sparks and flames away from the work area.
- Always work in a well-ventilated area.
- Never use petrol as a cleaning solvent. Generally, avoid handling it unless it is absolutely necessary.
- Do not use petrol for cleaning components by using compressed air.
- Keep petrol out of reach of children.

Engine oil
- Engine oil can cause skin illnesses if in constant and long contact with the skin.
- If the skin comes into contact with engine oil, wash the parts affected as soon as possible with soap and water.
- If engine oil comes into contact with the eyes, rinse abundantly with water and seek medical attention.
- If engine oil is swallowed, do not provoke vomiting to avoid the aspiration of the product into the lungs. Transport the injured person immediately to hospital.
- Used oil contains dangerous substances and poisonous for the environment. To substitute oil, it is necessary to be equipped to deal with the collection of used oil in respect of the norms in force.
- Do not dispose of used oil in the environment.
- Keep used oil out of the reach of children.

Engine coolant
- Under certain situations, the ethylene glycol contained in the engine coolant is inflammable and its flame is invisible. Ethylene glycol would cause serious burns if ignited because it is invisible.
- Avoid bringing the engine coolant into contact with hot parts. Such parts could be sufficiently hot to ignite the coolant.
- The engine coolant (ethylene glycol) can cause irritation of the skin and is poisonous if swallowed.
- If the engine coolant comes into contact with the skin, immediately remove any contaminated clothing and wash with soap and water. If it comes into contact with the eyes, abundantly rinse with clean water and immediately consult a doctor. If swallowed, do not provoke vomiting to avoid the aspiration of the product into the lungs. Administer clean water and transport the injured person immediately to hospital and show the product to the doctor.
- If exposed to high concentrations of vapour, transport the injured person to a non-poisonous atmosphere and if necessary call a doctor.
- Do not remove the radiator cap when the engine is still hot. Being under pressure, the engine coolant can be violently ejected and therefore provoke burns.
- The engine coolant contains dangerous and poisonous substances and is therefore dangerous for the environment. To substitute used engine coolant, it is necessary to be equipped to deal with the collection of used oil/of used engine coolant in respect of the norms in force.
- Do not dispose of engine coolant in the environment.
- Keep engine coolant out of reach of children.
Brake fluid

- Brake fluid is extremely corrosive.
- Avoid any contacts with the eyes, skin and the mucous membrane.
- If brake fluid comes into contact with the skin, remove all contaminated clothing and wash immediately with soap and water.
- If brake fluid comes into contact with the eyes, abundantly rinse with water and call a doctor.
- If swallowed, do not provoke vomiting to avoid aspiration of the product into the lungs. Immediately call a doctor.
- Take the injured person immediately to hospital, if he has breathed brake fluid into the lungs.
- In the case of exposure to high concentrations of vapour, move the injured person to a non-poisonous atmosphere and if necessary call a doctor.
- In the case of accidental contact, rinse abundantly with water and call a doctor.
- Keep brake fluid out of reach of children.

Thread-locking fluid

- As it is not classified as dangerous, the prolonged contact with the skin, particularly with regards to abrasions can provoke sensitiveness and dermatitis. In the case of contact with the skin, rinse abundantly with running water.
- Move the injured person into the open air and call a doctor if the injured person feels ill after having breathed in the product.
- In the case of contact with the eyes, rinse abundantly with water for at least 15 minutes.
- If the thread-locking fluid has been swallowed, drink an abundant quantity of water or milk. Do not provoke vomiting to avoid the aspiration of the product into the lungs. Immediately call a doctor.
- Keep out of reach of children.

Nitrogen - rear shock absorber

- The rear shock absorber contains nitrogen under pressure.
- Before disposing of used shock absorbers, discharge the nitrogen via the depressurising valve.
- Utilise only nitrogen to pressurise the shock absorber. The use of unstable gases can cause explosions that could cause burns.
- Do not place the shock absorber near to flames or sources of heat as this could cause explosions with consequent burns.
- Keep out of reach of children.

Battery

- The battery produces explosive gases. Keep it away from sparks, flames or cigarettes. During recharging, adequately ventilate the environment.
- The battery contains a solution of sulphuric acid (electrolyte).
- Sulphuric acid is corrosive and it destroys many materials and clothing. On contact with small quantities of water it generates a violent reaction that manifests itself by creating large quantity of heat and spurts of hot acid. Sulphuric acid attacks many metals thereby liberating hydrogen: an inflammable gas that forms an explosive mixture when mixed with air.
- Contact with sulphuric acid can cause burns. In the case of contact, remove immediately all contaminated clothing and wash the skin with abundant quantities of water. Take the injured person to hospital if necessary.
- In the case of contact with the eyes, rinse immediately with abundant water. Call a doctor and continue with the treatment until the doctor arrives.
- If the electrolyte is swallowed, rinse the mouth with water without swallowing. Take the injured person immediately to hospital and explain to the doctor there what the injured person has swallowed.
- The battery contains dangerous substances that are poisonous for the environment. It is necessary to be equipped to dispose of this product in respect of the norms in force.
- Do not dispose of used batteries in the environment.
- Keep out of reach of children.

Hot parts

- The engine and the exhaust system become very hot and maintain this temperature for some time after the engine has been switched off. Wait for these parts to cool down before handling them or working on the motorcycle near to them. Use protective gloves.
WARNING

The information contained in this paragraph is important so that the operations carried out on the motorcycle can be conducted without damaging the motorcycle.

- Thoroughly clean the motorcycle before disassembling it.
- During disassembly, clean all parts and place them in containers respecting exactly the order of disassembly.
- Always use the special utensils where necessary and each time where prescribed.
- Always use adhesives, sealants and lubricants where prescribed. Respect the instructions about their technical characteristics.
- Always substitute parts such as gaskets, O-rings, security washers with new parts.
- Slackening or tightening nuts or screws, always start with those of a greater dimension or from the centre. Always respect the torque values indicated.
- Utilise only MV Agusta spare parts.

INDEX

GENERAL INDEX

SUMMARY OF EACH CHAPTER
OPERATIVE TECHNICAL SPECIFICATIONS

MOTORCYCLE IDENTIFICATION

The registration number of the motorcycle is stamped on the right side of the steering head.

The engine registration number is stamped on the upper engine casing, near the forks.

Below is an example of the designation of the frame registration number:

```
ZCG F5 11 BB Y V 000000
```

- Manufacturer identification
- Vehicle model
- Progressive frame number

2) Engine registration number
1) Frame registration number
3) Homologation date
SUMMARY

TABLE OF CLAMPING TORQUES ...PAGE 3
TABLE OF MAINTENANCE ...PAGE 5
CO ADJUSTMENT ...PAGE 13
CYLINDER HEAD ...PAGE 17
TSS SYSTEM ..PAGE 21
DISTRIBUTION CONTROL UNITS ..PAGE 27
CYLINDER AND PISTON UNIT ...PAGE 48
CLUTCH ..PAGE 54
GEAR CHANGE AND GEAR CONTROL ..PAGE 63
ELECTRIC COMPONENTS ..PAGE 70
OIL PUMP ...PAGE 72
WATER PUMP ..PAGE 74
STARTING ...PAGE 80
BEDPLATE AND DRIVE SHAFT ...PAGE 82
TIGHTENING TORQUES TABLE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>N·m</th>
<th>Thread blockers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camshaft and gear screws</td>
<td>21</td>
<td>strong</td>
</tr>
<tr>
<td>Sliding block distribution screws</td>
<td>10</td>
<td>medium</td>
</tr>
<tr>
<td>Stand screws</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Valve cap screws</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Reed cover screws</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Chain tightening screws</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Phase sensor screw (MY 06)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Spark plug coil screw (MY 06)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chain tightening cap</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CLUTCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clutch nut</td>
<td>140</td>
<td>medium</td>
</tr>
<tr>
<td>Disk thrust plate screws</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>GEAR SHIFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinion nut</td>
<td>140</td>
<td>medium</td>
</tr>
<tr>
<td>Gear selection drum tightening screws</td>
<td>25</td>
<td>medium</td>
</tr>
<tr>
<td>M6 gear control screws</td>
<td>8</td>
<td>medium</td>
</tr>
<tr>
<td>BEDPLATE ACCESSORIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternator tightening screws</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Motor starter tightening screws</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Water pump tightening screws</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Neutral switch screws</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>FREE WHEEL STARTING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible coupling generator control screws</td>
<td>25</td>
<td>medium</td>
</tr>
<tr>
<td>Flexible coupling nut</td>
<td>55</td>
<td>strong</td>
</tr>
<tr>
<td>Flange tightening screws together with free wheel</td>
<td>10</td>
<td>medium</td>
</tr>
<tr>
<td>OIL CUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil cup tightening screws</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

TIGHTENING TORQUES: CONVERSION FACTORS
To convert a tightening torque, refer to the following table.

<table>
<thead>
<tr>
<th>N·m</th>
<th>Kg·m</th>
<th>ft·lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>0,10197</td>
<td>0,7375</td>
</tr>
<tr>
<td>9,807</td>
<td>------</td>
<td>7,233</td>
</tr>
<tr>
<td>1,3559</td>
<td>0,13826</td>
<td>------</td>
</tr>
</tbody>
</table>
CLAMPING TORQUES TABLE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>N·m</th>
<th>Thread blockers</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEDPLATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clutch cap M6 screws</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>M6 bearing clamp screw</td>
<td>12</td>
<td>medium</td>
</tr>
<tr>
<td>Extractable gear change cap M8 screws</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>M6 torque screws</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>M8 torque screws</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Bearing exchange screws</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Exchanger screw</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CONNECTING ROD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap screws</td>
<td>(*)</td>
<td></td>
</tr>
</tbody>
</table>

(*) See fitting notes
PLANNED MAINTENANCE SCHEDULE

The following diagram shows the recommended planned maintenance intervals. Periodic maintenance is essential to keep the vehicle in perfect running order and to ensure optimum cost efficiency.

WARNING Use shorter maintenance intervals if the vehicle is used in particularly harsh conditions.

Let us help protect the environment

Everything we do affects the entire planet and its resources. To protect the common interest, MV Agusta urges its customers and service operators to use the vehicles and dispose of their components in compliance with applicable regulations on environmental pollution control, waste disposal and recycling.

★ Information marked with this symbol refers to the F4 1000 Tamburini model.

Scheduled maintenance tables

<table>
<thead>
<tr>
<th>Frequency Km (mi)</th>
<th>Pre-delivery</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor oil</td>
<td>Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Motor oil filter</td>
<td>Substitution (Use only MV Agusta original oil filter)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cooling liquid</td>
<td>Check / Top up</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cooling system</td>
<td>Check for leaks</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Electric fans</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Valves</td>
<td>Check / Regulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Distribution chain</td>
<td>Check</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Mobile distribution block</td>
<td>Check / Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Chain tightening block</td>
<td>Check / Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Spark plugs</td>
<td>Check / Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fuel filter</td>
<td>Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Throttle body</td>
<td>Check / Regulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Air filter</td>
<td>Check / Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Brakes and clutch liquid</td>
<td>Level check</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Brakes / Clutch</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Brake pads</td>
<td>Check / Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fuel lines</td>
<td>Check for defects and leaks</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Throttle control</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Starter control</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

WARNING

- Use shorter maintenance intervals if the vehicle is used in particularly harsh conditions.

- Let us help protect the environment

- Information marked with this symbol refers to the F4 1000 Tamburini model.
<table>
<thead>
<tr>
<th>Description</th>
<th>Frequency Kg (mi)</th>
<th>0</th>
<th>1000 (6000)</th>
<th>6000 (38000)</th>
<th>12000 (75000)</th>
<th>18000 (112000)</th>
<th>24000 (148000)</th>
<th>30000 (186000)</th>
<th>36000 (224000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-delivery</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmissions and flexible controls</td>
<td>Check / Regulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Drive chain</td>
<td>Check / Regulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Lubrication</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Pinion / Stop washer</td>
<td>Check</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Every time drive chain is replaced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring gear</td>
<td>Check</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Every time drive chain is replaced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprocket elastic coupling</td>
<td>Check</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Head tube ring nut</td>
<td>Check / Regulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Steering bearings</td>
<td>Check / Regulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Lubrication</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Tyres</td>
<td>Check pressure</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Check wear</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Every time tyres are replaced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel rim</td>
<td>Visual check</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Every time tyres are replaced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front wheel bearings</td>
<td>Check</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Every time tyres are replaced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium parts</td>
<td>Visually check for damage</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>At least every 6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side stand</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Side stand switch</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Rear wheel hub</td>
<td>Check / needle bearing lubrication</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Substitution / needle bearing lubrication</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Big fork bearings</td>
<td>Check / lubrication</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Big fork chain shoes</td>
<td>Check / substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Frame plate chain shoes</td>
<td>Check / substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Rear damper</td>
<td>Check / Regulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Front fork oil</td>
<td>Substitution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Battery connections</td>
<td>Check and cleaning</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Electric system</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Meter assy. combination</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Lights / visual signals</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Claxon</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Front head light</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Regulation</td>
<td>Every time vehicle geometry is altered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter switch</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Locks</td>
<td>Check operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Tightening of screws and nuts</td>
<td>Check / Tighten</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hose clamps</td>
<td>Check / Tighten</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>General lubrication</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>General test</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Engine F4 1000 S - S1+1 - R - R1+1 - 312 R - R1+1 - AGO - MT - SENNA
Table of lubricants and fluids

<table>
<thead>
<tr>
<th>Description</th>
<th>Recommended product</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine lubrication oil</td>
<td>AGIP RACING 4T 10W/60 (*)</td>
<td>API SJ SAE 10W/60</td>
</tr>
<tr>
<td>Cooling liquid</td>
<td>AGIP ECO - PERMANENT</td>
<td>Ethylene glycol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diluted with 50 per cent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>distilled water</td>
</tr>
<tr>
<td>Clutch and brake fluid</td>
<td>AGIP BRAKE FLUID DOT4</td>
<td>DOT4</td>
</tr>
<tr>
<td>Chain oil</td>
<td>MOTUL CHAIN LUBE ROAD</td>
<td>--</td>
</tr>
</tbody>
</table>

*: MV Agusta recommends purchasing the product from its authorized dealers. The engine oil AGIP Racing 4T 10W/60 has been specially designed for the F4 engine. Should this lubricant be unavailable, MV Agusta recommends using fully synthetic oils complying with or exceeding the following specifications:

– API SJ
– ACEA A3
– JASO MA
– SAE 20 W-50 or 10 W-60

NOTE The above specifications are to be found, alone or in combination with others, on the lubricating oil container.

NOTE If the vehicle is used in races, use Agip Racing 4T 20W50 oil.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>STANDARD</th>
<th>WEAR LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø Sealing external diameter</td>
<td>24,6 +0,3 mm</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet</td>
<td>28,6 +0,3 mm</td>
<td></td>
</tr>
<tr>
<td>Sealing face thickness</td>
<td>1 +0,2 -0,3 mm</td>
<td></td>
</tr>
<tr>
<td>Stem-guide clearance</td>
<td>0,02 ± 0,04 mm</td>
<td>Coupling : 0,10 mm</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet</td>
<td>0,01 ± 0,03 mm</td>
<td>0,08 mm</td>
</tr>
<tr>
<td>Ø Guide internal diameter</td>
<td>4,5 +0 +0,012 mm</td>
<td>4,55 mm</td>
</tr>
<tr>
<td>Valve stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>4,475 ± 0,005 mm</td>
<td>4,445 mm</td>
</tr>
<tr>
<td>Inlet</td>
<td>4,485 ± 0,005 mm</td>
<td>4,455 mm</td>
</tr>
<tr>
<td>Valve spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal</td>
<td>33,8 mm</td>
<td>33,3 mm</td>
</tr>
<tr>
<td>External</td>
<td>37,9 mm</td>
<td>37,4 mm</td>
</tr>
<tr>
<td>F4 1000 MT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal</td>
<td>35,28 mm</td>
<td>34,78 mm</td>
</tr>
<tr>
<td>External</td>
<td>39,04 mm</td>
<td>38,54 mm</td>
</tr>
<tr>
<td>F4 1000 312 R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal (8000A9774)</td>
<td>35,28 mm</td>
<td>34,78 mm</td>
</tr>
<tr>
<td>External (8000A9886)</td>
<td>39,04 mm</td>
<td>38,54 mm</td>
</tr>
<tr>
<td>Valve-cam clearance</td>
<td>0,20 ± 0,29</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet</td>
<td>0,15 ± 0,24</td>
<td></td>
</tr>
<tr>
<td>ITEM</td>
<td>STANDARD</td>
<td>WEAR LIMIT</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>CYLINDER AND PISTON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston ovalization..........................</td>
<td></td>
<td>0,015 mm</td>
</tr>
<tr>
<td>Piston-cylinder play......................</td>
<td>0,038 ÷ 0,067 mm</td>
<td>0,10 mm</td>
</tr>
<tr>
<td>Piston-pin play............................</td>
<td>0,004 ÷ 0,012 mm</td>
<td>0,03 mm</td>
</tr>
<tr>
<td>Pin-foot connecting rod play................</td>
<td>0,015 ÷ 0,032 mm</td>
<td>0,06 mm</td>
</tr>
<tr>
<td>Segment thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup>................................</td>
<td>0,8<sup>-0,01</sup> -0,03 mm</td>
<td>0,75 mm</td>
</tr>
<tr>
<td>2<sup>nd</sup>................................</td>
<td>0,8<sup>0</sup> -0,02 mm</td>
<td>0,75 mm</td>
</tr>
<tr>
<td>Oil scraper..................................</td>
<td>1,5<sup>-0,03</sup> -0,08 mm</td>
<td>1,38 mm</td>
</tr>
<tr>
<td>Maximum segment-cylinder play</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup>................................</td>
<td>0,2 ÷ 0,4 mm</td>
<td>0,6 mm</td>
</tr>
<tr>
<td>2<sup>nd</sup>................................</td>
<td>0,2 ÷ 0,4 mm</td>
<td>0,6 mm</td>
</tr>
<tr>
<td>Scraper......................................</td>
<td>0,2 ÷ 0,7 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>CLUTCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk thickness..............................</td>
<td>3 mm................................</td>
<td>2,8 mm</td>
</tr>
<tr>
<td>Springs (MY 2004-2005).....................</td>
<td>....................................</td>
<td>57,9 mm</td>
</tr>
<tr>
<td>Springs (MY 2006-2007).....................</td>
<td>....................................</td>
<td>53 mm</td>
</tr>
<tr>
<td>ITEM</td>
<td>STANDARD</td>
<td>WEAR LIMIT</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>GEAR SHIFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gear fork-groove pivot play.......</td>
<td>0,35 ÷ 0,15 mm</td>
<td>0,65 mm</td>
</tr>
<tr>
<td>Drum pit width....................</td>
<td>7,05 ÷ 7,15 mm</td>
<td>7,35 mm</td>
</tr>
<tr>
<td>Ø fork pivot........................</td>
<td>6,8 ÷ 6,9 mm</td>
<td>6,7 mm</td>
</tr>
<tr>
<td>Minimum idle gear axial play........</td>
<td>0,10 mm</td>
<td></td>
</tr>
<tr>
<td>Maximum gear fork play...........</td>
<td></td>
<td>0,7 mm</td>
</tr>
<tr>
<td>Gear limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary................................</td>
<td></td>
<td>5,6 mm</td>
</tr>
<tr>
<td>Secondary...........................</td>
<td></td>
<td>4,6 mm</td>
</tr>
<tr>
<td>Fork selection gear limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary (5a - 6a)..................</td>
<td></td>
<td>4,65 mm</td>
</tr>
<tr>
<td>Secondary (1a-2a, 3a-4a)..........</td>
<td></td>
<td>3,65 mm</td>
</tr>
<tr>
<td>Fork – pit play...................</td>
<td>0,2 ÷ 0,3 mm</td>
<td>0,7</td>
</tr>
<tr>
<td>BEDPLATE – DRIVE SHAFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bed bearing functioning play......</td>
<td>0,012 ÷ 0,038 mm</td>
<td>0,06 mm</td>
</tr>
<tr>
<td>Connecting rod bearing Functioning play</td>
<td>0,036 ÷ 0,061 mm</td>
<td>0,08 mm</td>
</tr>
<tr>
<td>Drive shaft axial play...........</td>
<td>0,2 mm</td>
<td></td>
</tr>
</tbody>
</table>
Cleaning the parts
All of the parts must be cleaned with special biodegradable solvents and dried with compressed air. Proceed with the cleaning process of all the parts before disassembling them as well as after the particular parts have been disassembled. Clean each part even before reassembling.

Connections
In order to allow the motor to function in the best conditions it is absolutely necessary that all of the connections meet the standards established by the manufacturer. A connection with reduced standards could cause seizing, while a connection with excessive toleration causes vibrations which accelerate the wear of the components.

General norms for assembling the parts
For reassembling invert the disassembling procedure, paying careful attention to the specified procedures. Gaskets, oil spill protector, metallic locks. Tightening rings in deformable material and self blocking nuts must always be substituted.
The bearings are dimensioned for a determined number of working hours. Substitution is therefore recommended in consideration of the difficulty in checking wear. The above mentioned is in addition suggested for dimensional controls of the single components mentioned in the relative paragraphs.
It is absolutely necessary to carefully clean all of the components; the bearings and all of the other parts subject to wear must be lubricated with motor oil before reassembling. Nuts and screws must be locked to the pre established torques.

Following are the descriptions of the disassembling, revision and reassembling procedures of the various parts and sub parts constituting the motor, in the finalized sequence of a completely disassembled motor.

Disassemble the motor from its frame as described in the relative paragraph;
Drain the oil from the oil cup;
Remove the spark plugs covering the openings with clean rags to avoid small objects (rings, etc.) from falling into the motor.
Measuring compression in the cylinder

The following tools are necessary in order to carry out this procedure:
- Spark plug key: n° 800089013
- Compression measurer
- Adapter for the compression measurer.

A) Heat the motor to the usual functioning temperature (of regime);
B) Turn the motor off, remove covering structure, tank, air box and remove the spark plugs;
C) Measure cylinder compression.

Drag the motor into rotation by means of the starting motor with the butterfly valve completely open until the compression measurer indicator (compression meter) no longer rises; the compression measurement obtained is the maximum.

NOTE

Be sure the battery is completely charged.

<table>
<thead>
<tr>
<th>Cylinder compression control (280 rpm-min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Type</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>S - S1+1</td>
</tr>
<tr>
<td>Ago</td>
</tr>
<tr>
<td>Tamburini</td>
</tr>
</tbody>
</table>

- Repeat the procedure for the other cylinders.

N.B.: If the compression in the cylinder is lower than the minimum value of the reported range, check the following points:
- A) Carbon deposits on the walls of the combustion chamber and on the piston ceiling;
- B) The head gasket is not of the correct measurements;

N.B.: If the compression in the cylinder is lower than the minimum value of the reported range, check the following points:
- A) The seat of one or more valves is damaged and the valves do not maintain the compression pressure;
- B) One or more valves have null functioning play;
- C) The piston, cylinder play is excessive;
- D) The cylinder head is twisted and/or the head gasket is damaged;
- E) Excessive play between ring and cable.

NOTE

Before carrying out the compression trial, accurately check the battery tension since the compression value which appears is quite influenced by the rotation velocity of the motor, and consequently by the battery tension.
CO REGULATION
Attention: CO regulation is of vital importance for the correct functioning of the motor. Prior to carrying out the CO regulation accurately check:
- That there are no cracks or damage of the rubber tubes of the vacuum meter line
- That gas does not seep out of the exhaust pipe joints
- That the gas tube links are correctly inserted in the tank lodgings and that the tubes are neither bent nor crashed

PROCEDURE FOR MY 2004-2005 MODELS

A) Verify and if necessary regulate the butterfly valve opening to minimum using Magneti Marelli MDST software. The butterfly valve angle must be of 2.1 and 2.3 degrees. Fluctuation between 1.9 and 2.1 and between 2.3 and 2.5 are allowed. If required, you can intervene exclusively operating on the specific screw (1) placed on the opening gudgeon of the fluttering body.

[IMAGE]

NOTE Operate only on the right screw (the smaller one).

B) Verify the correct functioning of the water temperature sensors and environmental air and pressure and the battery tension using Magneti Marelli MDST software.

C) Wait with the motor at minimum speed for the culling vents to start up.

D) Connect the vacuometer to the sockets (2) and the CO tester to the socket (3) after having unscrewed the cap with a number 5 hexagonal closure.
E) Balance the cylinder depression by means of the bypass screws (1), starting with cylinder no. 2, setting the screw at 1.5 turns (to ensure proper operation of the EBS valve), of the fluttering body trying to get close to the inserted vent at following CO levels and minimum functioning:

Cylinder n° 2
Bypass opening: 1-2,5 turns

Cylinder N° 1-3-4
Bypass opening: 1-3,5 turns

CO: 3,5±0,5%
Minimum RPM: 1200±50

F) Disconnect the vacuometer, speed up the engine and verify the throttle goes back to the value previously defined, wait for the CO value stabilisation and verify CO and rpm values are in the given clearance.

G) If the values are out of range check the vacuometer line for air infiltration, reconnect the vacuometer and repeat the operation starting from the E) point.
PROCEDURE FOR MY 2006 MODELS

A) Check and if necessary adjust the throttle opening at idle speed using the VDSTS Pro diagnostic software.

NOTE Adjust the throttle value WITHOUT STARTING THE ENGINE

The throttle angle should be 2.33 degrees. Allowable values range from 2.1 to 2.5 degrees.

Should the throttle angle need to be corrected, DO NOT turn the adjusting screws but use the diagnostic software.

Select the menu:
Display ⇒ Adjustments ⇒ Reset Errors (or select the screwdriver icon). Press the TPS button (1) to acquire the throttle position. Wait until the operation has been completed, then return to the graphical display and check the throttle value.

NOTE DO NOT turn the adjusting screws.

Turn the ignition key to the OFF position and wait 15 seconds to allow the control unit to store the set value.

B) Using the VDSTS software, check the battery voltage and the operation of the ambient pressure and water and air temperature sensors.

C) Let the engine idle until the cooling fans start up.

D) Connect the vacuum gauge to sockets (2) and the CO tester to socket (3) after undoing the 5-mm socket plug.
E) Balance the cylinder depression by means of the bypass screws (1), starting with cylinder no. 2, setting the screw at 1.5 turns (to ensure proper operation of the EBS valve), of the fluttering body trying to get close to the inserted vent at following CO levels and minimum functioning:
 Bypass opening: 0.5-3.5 turns
 CO: 3.5±0.5%
 Minimum RPM: 1150±50

F) Disconnect the vacuometer, speed up the engine and verify the throttle goes back to the value previously defined, wait for the CO value stabilisation and verify CO and rpm values are in the given clearance.

G) If the values are out of range check the vacuometer line for air infiltration, reconnect the vacuometer and repeat the operation starting from the E) point.

PROCEDURE FOR MY 2007 MODELS

CO ADJUSTMENT IS NOT REQUIRED.

The system can correct its (stoichiometric) carburation through the Lambda probe control. This does not happen straightaway but depends on the Lambda probe switching speed for a water temperature of 85 to 105 °C.

You will notice that, when the Lambda probe % controller work slightly ABOVE ZERO, the ADOFFPL setting WILL INCREASE and will bring the Lambda % channel back to about 0 ±3%.

You will notice that, when the Lambda probe % controller work slightly BELOW ZERO, the ADOFFPL setting WILL DECREASE and will bring the Lambda % channel back to about 0 ±3%.
CYLINDER HEAD

Tightening torque

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C*</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>12</td>
<td>8</td>
<td>45</td>
<td>8</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td>Medium</td>
<td>Sealant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See text.

OIL

- Apply motor oil

NO OIL

- Do not apply neither oil nor other types of substances

GR

- Apply grease

SS

- Apply silicone sealing

HSC

- Apply HSC Molikote

M

- Apply mastic for gaskets

MY 2007
Removal of Head group

Remove the eight tightening nuts (1) and remove the valve cover (2) proceed carefully so as not to damage the gasket (3).

⚠️ When refitting, it is essential to apply silicone sealant as shown in the figure at the beginning of the chapter.

On the left side of the motor remove, together with the gasket, the phonic wheel cover by means of the five screws.
Remove the oil tube adduction and the head situated at the front of the motor, using the two tightening screw with a T number 8 key.
Working on the phonic wheel knot with a number 19 mm bush key rotate the drive shaft up to the point where the n° 1 piston is at MSP in burst phase.

In this position the T notch on the phonic wheel is lined up with the reference notch on the bedplate.

The cams relative to cylinder n° 1 converge upwards in the symmetrical position as indicated in the figure. Beside, the reference notches on the control wheels of the camshafts are in horizontal position and positioned externally.
Loosen the central screws of the chain tensioner distribution system. Remove the chain tensioner by means of the two tightening screws.

First remove the 2 external stands (4 and 5) of the camshafts by means of the four screws each internally hexagonal.

At the same time remove the 2 internal stands (6 and 7) placing attention on the thrust caused by valve springs.
TSS SYSTEM

<table>
<thead>
<tr>
<th>Tightening</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>torque N·m</td>
<td>5-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td></td>
<td>strong</td>
<td>strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OIL</td>
<td></td>
</tr>
<tr>
<td>NO OIL</td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td></td>
</tr>
</tbody>
</table>

- Apply motor oil
- Do not apply neither oil nor other types of substances
- Apply grease
- Apply silicone sealing
- Apply HSC Molikote
- Apply mastic for gaskets

Actuator
Non-return valve
Vacuum for cyl. 4
The TSS system installed on the MV Agusta F4 Massimo Tamburini makes it possible to change the geometry of the intake system, thus ensuring maximum performance at all engine speeds. The system can alter two fundamental parameters:

- The overall length of the intake manifold.
- The diameter of the intake manifold.

A pneumatic system governed by an electronic control unit allows the intake horns to be lifted and lowered. This makes it possible to increase the overall length of the intake manifold and to reduce its cross-sectional area, thus making for optimum performance at medium/low engine speeds. At high engine speeds the horns are moved away from the throttled body, making the intake manifold considerably shorter and leaving the largest cross-sectional area open so as to second the breathing requirements of the engine.

The following is a description of the procedure used for the fitting, which requires much more attention than the removal.

The TSS system requires no maintenance. It is however advisable to check its operation by following these steps:

- Remove the airbox.
- Start the engine and let it idle for a few seconds. Rev up the engine to 5000 rpm a couple of times; the horns should come into contact with the throttled body.
- Turn off the engine.
- Check that the horns remain in contact with the throttled body for at least 20 seconds after the engine has stopped.
WARNING: If the horns move to the farthest position before 20 seconds, or if they do not come into contact with the throttled body, check the seal of the vacuum movement system.

Detail of the vacuum system control valve

Position the TSS system retaining plates and manually turn in the M5 screws until they come into contact with the plate.
Slightly loosen the screws and remove the plates that will be used in the final stage of the assembly.

Apply a thin film of grease to the O-ring seals.

Insert the tube from the vehicle vacuum system.
Gently press the TSS into its seat.

Connect the tube to the pierburg valve.

Tighten the clamp with the specially designed pliers.
Fit the retaining plates described previously and then tighten the M5 screws (see figure) at 5-7 N·m.

Check the operation of the system by using the previously described procedure.
DISTRIBUTION CONTROL UNITS

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>21</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo Thread blockers</td>
<td>Strong</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **OIL**: Apply motor oil
- **NO OIL**: Do not apply neither oil nor other types of substances
- **GR**: Apply grease
- **SS**: Apply silicone sealing
- **HSC**: Apply HSC Molikote
- **M**: Apply mastic for gaskets
Phase sensor (MY 2006)

Starting with the 2006 version, the MV Agusta F4 1000 is equipped with a phase sensor that transmits timing phase data to the control unit.

The sensor includes two half rings which are integral with the camshaft on the exhaust side and whose rotation provides real-time timing phase information to the control unit.

For the MY 2007 models both the half rings are welded onto the camshaft.

⚠️ To prevent malfunction of the sensor, DO NOT on any account remove the half rings from the camshaft or the sensor from the crankcase.

Code for camshaft and complete exhaust MY 2004-05-06: 8C00A9010

Code for camshaft and complete exhaust MY 2007: 8000A6692

The sensor that transmits data to the control unit is fixed to the crankcase on the exhaust side by means of a screw.

A hole in the crankcase allows the sensor to detect the movement of the half rings fixed to the camshaft.
Removing the valve gear components
In order to facilitate the detachment of the stands use a rubber hammer or delicately the end part of a flat screwdriver.

Slightly rotate without force the unloaded end of the gearshaft shifting it from its slot; by doing so, the tension on the distribution chain will loosen.

Release the distribution chain.
First remove the unloaded end of the gearshaft. Fasten the distribution chain with copper thread in order to retrieve it during the following procedure.

Remove the inlet end of the camshaft.

Remove the first link block for the distribution chain by using the tightening screws.

In case it should be necessary to substitute the distribution chain at the expected mileage (see the programmed maintenance chart), it is advisable also to substitute the gears on the camshaft (INLET n°8000A3032 - EXHAUST n° 8000A3033).
When refitting, thoroughly clean all surfaces.
Position the timing gear so that the side that has received no thermal treatment (the one with no timing marks) is in contact with the NL655-TYPE NORD-LOCK washers Part No. 8000A3486.
When refitting, always replace the washers and fit them as shown in the figure. Apply the threadlocking product STRONG THREAD BLOCKER on new screws Part No. 8C0085071 and tighten at 21 N·m.
During the operation, take special care in ensuring that the chain is not dislodged from its position.
Remove the 12 tightening nuts from the head beginning from the external ones proceeding towards the internal ones, following the sequence indicated in the figure.

⚠️ On each encarcement there is a washer. Be carefully no to let it fall into the motor, you may block the holes with clean rags.

⚠️ Nuts (6) and (8) have a bevelled side. Be sure to replace them in their respective positions when refitting the cylinder head.
Remove the head and place it onto a clear place

Remove the gasket which will be substituted during reassembly.

Avoid placing the head upside down.

Inspection of the head group

Remove carbon deposits from the combustion chambers. Clean away eventual encrustments from the canalizations of the cooling liquid. Check to be sure that are no crack and that the holding surfaces are free of crevices, runs or any other kind of damage. Verify the planarity of the stroke surfaces. Verify the perfect state of the spark plug threads.
Head assy assembly

To execute this operation you need the following special tool:
A) n° 8000A3406 piston / cylinder plane distance measuring tool

Place the new gasket on the cylinder plane.
The gasket is of the same thickness of the one installed before if no parts replacement occurred.

If replacement is necessary you’ll need to measure the piston / cylinder plane distance with the n° 8000A3406 tool, tightening the head nuts at 12 N·m. The choice is made following table below:

The gaskets used on the MY 2006-2007 models differ from those fitted on the MY 2004-2005 vehicles and are consequently not interchangeable with them. The table below shows the corresponding codes.

<table>
<thead>
<tr>
<th>Distance between piston and cylinder surface (X)</th>
<th>Type of gasket</th>
<th>Code MY 2004/2005</th>
<th>Code MY 2006/2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0,100; -0,250 mm</td>
<td>0,70</td>
<td>8B00A2300</td>
<td>8B00A5200</td>
</tr>
<tr>
<td>-0,260; -0,410 mm</td>
<td>0,55</td>
<td>8A00A2300</td>
<td>8B00A5200</td>
</tr>
<tr>
<td>-0,420; -0,570 mm</td>
<td>0,40</td>
<td>8000A2300</td>
<td>8B00A5200</td>
</tr>
</tbody>
</table>

The cylinder base gaskets always have the same thickness (see table).

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>N° ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,38 mm</td>
<td>800087771</td>
</tr>
</tbody>
</table>

1-Gasket thickness
2-Gasket code

Note: Fit the gasket with the inscriptions facing up.
Fit the gasket with the inscriptions facing up and the protrusion towards the march gear. Insert the centering bushes between the head and the cylinder. Insert the washers on the encarcement if necessary with the help of a screwdriver to guide them onto the internal encarcements. Lubricate with antibinding grease of the HSC MOLIKOTE type only on the nut threads. Do not apply grease on the encarcement threads, which must be well cleaned and degreased.

Screw the bolts with a brugle key and press them at 35 N·m. Tighten the bolts beginning with the internal ones towards the external ones following the outline indicated in the figure at 45 N·m.

Retrieve the distribution chain. Insert the fixed sliding block with its screws and, after having carefully degreased it, tighten it at a torque of 8 N·m with MEDIUM THREAD BLOCKER.
Continue with the setting as follows:
be sure that piston n° 1 is the MSP in burst phase; in
this position “T” notch on the phonic wheel is in line
with the reference notch on the bedplate.
Remove the copper thread from distribution chain,
keep the chain tightened.

⚠️ Engine timing is required whenever the
intermediate gear or the crankshaft are
replaced. Refer to the procedure on page 93.
Insert the inlet camshaft so that the phase notch on the conveyor wheel is parallel to the head plane and facing the outside.

Insert the exhaust camshaft with the notch placed between the 24th and 25th chain distribution gudgeon, beginning to count from gudgeon after the inlet camshaft notch.

Check the correct position of all the O Rings under the head stands.

NOTE: If the operation is performed with the engine installed on the vehicle, lift the front wheel until the axis of the cylinders is in a vertical position.

Position the n°2 and n°3 stands, referring to the numbers towards the inlet end;
Position the n°1 and n°4 stands,
Bring the screws together manually hexagonally embedded.

⚠️ **Before tightening stand screws be sure that the chain tensioner is assembled.**

⚠️ **Do not tighten the stand screws if the reaction springs are charged. Appropriately turn the camshaft so that the stand springs of which are to be tightened are uncharged and that the cams are positioned on the base radius.**
Progressively move the internal hexagonal screws close. Tighten the screws at a torque of 12 N·m., always beginning from n°2 and n°3 stands. Check to be sure that the valve cap gaskets are in good condition. Apply a layer of gasket 5552 silicone on the semi moons on the head in correspondence with the camshaft.

Position the valve cap. Manually position the screws, thus tighten at 8 Nm. Place the adduction oil tube at the head greasing the O-Rings.

Dismounting cylinder head pieces

In order to carry out this procedure the following tools are necessary:
- tool n° 800094796 to disassemble valves
- tool n° 800095179 to remove semi cones
- tool n° 800094798 to take out rubber holdings

Each piece relative to the same valve (cup, spring, semi cone, etc.) must be reassembled onto the same valve from which it came off.

Remove the cylinder head as indicated the paragraph “cylinder assay removal”.

- 37 -
Valve removal

A) Take out the cups (1) with the help of a magnet and number them with a marker so as to reassemble them in the same position.

B) Remove the tablets (2) of play adjustment with a magnet and place them inside the relative cup so as to reassemble them in the same position. To remove the semi cones (3) exclusively use tool n° 95179 so as to avoid bending the valves:

C) Assemble the head on tool n° 800094796

D) Hammer on the superior disk with a rubber hammer to unblock the semi cones

E) Press the springs on the superior disk

F) Take out the semi cones with a magnet

G) Slowly release the disk pusher.

Then remove in the following order:

A) Semi cones

B) The 2 coaxial springs (4 and 5);

C) If necessary remove the rubber holdings using tool n° 800094798

D) Remove the inferior disk more grazingly (6)

E) Slide the valve out of the combustion chamber
Maintenance of the valve slot

Check the stroke surface [A] between the valve [B] and the slot [C]: no traces of pitting or cracks must appear. Measure the external diameter [D] of the stroke surface on the valve slot. If this should appear to be too elevated it is possible to repair the slot.

External diameter of the stroke surface of the valve slot

Standard: exhaust 24,6 mm +0,3 mm
inlet 28,6 mm +0,3 mm

Measure the width of the stroke [E] with a varnished gauge or with Prussian blue. If it should turn out to be too wide, too thin or irregular it will be necessary to repair it.

 Thickness of the stroke surface of the slot

standard : exhaust, inlet 1 mm +0,2 mm -0,3 mm [E]

The repair must be carried out by milling the slots using the appropriate monocutting milling machines at 78° (1), 45° (2) and 17° (3). Ten proceed with the grinding of the valves and verification of the holding.

Remove the minimum quantity of material from the slot.
Inlet max 0,5 mm (vertical)
Exhaust max 0,5 mm (vertical)

⚠️ Verify that there is no leakage filling the inlet and exhaust of the gas canalization. If so, check the quality of repair with Prussian blue.

⚠️ When reassembling never use calibrated tablets of a thickness inferior to 1,6 mm.
Substitution of the valve slot

The following tools are necessary for this procedure:
- prick-puncher n° 800095319 for inlet slot
- prick-puncher n° 800095318 for exhaust slot

Proceed as follows:
A) Remove the worn slots carefully milling them so as not to damage the head lodging
B) Check the lodging diameter on the head and choose the oversized valve slot considering that the assembling interference should be 0,10÷0,15 mm.
C) Valve slots are furnished with an increased replacement part of 0,03 mm on the external diameter.
D) Slowly and evenly heat the head at a max temperature of 180°C and cool the new slots with dry ice.
E) Place the slots perfectly in frame into its lodging, using the special n° 800095319 prick-puncher (INLET) e n° 800095318 (EXHAUST)
F) Let cool and proceed with the milling of the slots and grinding the valves referring to the following quotients:

<table>
<thead>
<tr>
<th>Ø A</th>
<th>28,60 0 +0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø S</td>
<td>24,6 0 +0,3</td>
</tr>
<tr>
<td>[E]</td>
<td>1 +0,2 -0,3</td>
</tr>
</tbody>
</table>
Valve guide check and maintenance

In order to carry out this procedure the following tools are necessary:
- Control tampon n° 800095429
- Tampon n° 8000A2385

Valve stem-valve guide play:
- 0,01÷0,03 mm inlet
- 0,02÷0,04 mm exhaust

Coupling limit:
- 0,08 mm inlet
- 0,1 mm exhaust

Internal guide Ø limit:
- 4,55 mm

Proceed with an accurate visual check of the valve guide.
In order to determine the coupling wear between guide and valve stem it is necessary to measure the play using a control tampon and micrometer.

NOTE

The control stopper 800095429 (Ø 4,55) must not pass.

NOTE
In the case of substituting the guide valve it is necessary to check and if necessary also substitute the valve.

Removal of the valve guide

After having removed the valves and rubber holdings as described in the relative paragraph, continue as follows:
Slowly and evenly heat the cylinder head up to 100°.
Using stopper n° 8000A2385 slide out the valve guide.
Continue with a visual check of the slot to verify its state.
Guide valve installation

Assemble an oversized valve guide as follows:

Oil the external valve guide surface. Slowly and evenly heat the cylinder head up to 150°. If necessary cool the valve guides with (N2) nitrogen liquid; or dry ice. Insert the valve guide using the special n° 8000A2385 tampon up to the stroke and let rest until the temperature has stabilized. Check to be sure the valve slides freely in the valve guide otherwise coat it with a 4,5 H7 reamer or broach N° 8000A2625.

Valve

The stem diameters must not fall below:

4,485³⁄₁₀₀ mm inlet
4,475³⁄₁₀₀ mm exhaust

The width of the sealing surfaces should fall in the range 0.7 - 1.2 mm (see figure). Check to be sure that the stem and the surface in contact with the valve slots are in good condition. No traces of pitting, cracking, deformations or traces of wear should appear. Verify that the stem is perfectly rectilinear.
Valve-guide valve coupling

Coupling play at assembly must be:
0,01 ± 0,03 mm inlet
0,02 ± 0,04 mm exhaust
The maximum coupling limit permitted is even to
0,08 mm inlet
0,10 mm exhaust
If a major play should result, substitute valve and valve guide.

Springs (F4 1000 S-S1+1-R-R1+1-AGO-SENNA)

Check to be sure that the free value of length is not inferior to the suggested limit and in such case substitute the springs:
Internal spring L = 33,8 mm
Service limit 33,3 mm

External spring L = 37,9 mm
Service limit: 37,4 mm

Inlet valves springs (F4 1000 MT)

Internal spring L = 35,28 mm
Service limit: 34,78 mm

External spring L = 39,04 mm
Service limit: 38,54 mm

Inlet valves springs (F4 1000 312 R)

Internal spring L = 35,28 mm
Service limit: 34,78 mm

Internal spring L = 39,04 mm
Service limit: 38,54 mm

Valve reassembly

A) Carefully degrease the guide
B) Insert the inferior basement disk (6) and be sure that it is in beat.
C) Assembly the rubber holdings, always new, on the valve guide using tool n° 800095581;
D) Sprinkle the valve stem with oil.
Assembling the valve.

Insert in the order of:
A) Insert the two coaxial springs
B) Slide the semi cones into the superior disk slot and thus place the disk on the springs
C) Assemble the head on the disassembling valve tool n° 800094796 and compress the spring with tool 800095180 until the semi cones are inserted.
D) Using a rubber hammer strike a slight blow on the valve so as to place the semi cones.

NOTE Before placing the semi cones be sure that the head is not resting on a plane in order to avoid distorting the valve. Place it onto two bases which allow the valve to move.

E) Insert the tablet of the correct thickness and lubricate its surface
F) Make sure it easily turns in its slot
G) Insert the cup after lubricating the slot

Insert the cylinder head as described in the paragraph “Head assay assembly”.

NOTE 800095180
Regulating valve play
Verify that the spark plugs have been disassembled.

⚠️ Should this procedure be carried out with the head assembled on the motor, block the spark plug holes with clean rags and assemble plate n° 800094797 to avoid the pieces accidentally falling into the chain distribution opening.

A) Rotate the drive shaft until completely unwinding the springs relative to the valves on which intervening (MSP in burst phase).

B) Measure valve play with a thickometer.

<table>
<thead>
<tr>
<th>Inlet valve play</th>
<th>Exhaust valve play</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 ÷ 0.24 mm</td>
<td>0.20 ÷ 0.29 mm</td>
</tr>
</tbody>
</table>

C) Calculate the D difference between the compared play and optimal play shown on the chart
D) Read the value of S thickness on the tablet;
E) Choose a new tablet with an S+D thickness.

⚠️ During reassembly never use a tablet with a thickness less than 1,6 mm.
Chain tensioner
Remove the central screw-cap and withdraw the spring and the pin.
Remove the screws fixing the chain tensioner to the head.
Remove the chain tensioner.
Disassemble the chain tensioner and check the correct working of each part.
The internal pin must run clearly and the inner spring must give a quick response.
Replace the assembly in case of malfunction.
If everything works properly lubricate the parts and install the assembly with the chain tensioner in the minimum extension position (all in the main body)
Install the chain tensioner body locking the 2 socket head screws using a T wrench with a 8 N·m torque
Install in this order: the pin in the spring, the spacer and the screw cap.
Lock the screw cap by hand till you feel the tensioner extend, then lock it with a 8 N·m torque
Acting this way the chain tensioner is adjusted.

The chain tightener assembled to the MY 2007 models is code: 8000A5199
CYLINDER AND PISTON GROUP

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
</tr>
</tbody>
</table>

OIL: Apply motor oil
NO OIL: Do not apply neither oil nor other types of substances
GR: Apply grease
SS: Apply silicone sealing
HSC: Apply HSC Molikote
M: Apply mastic for gaskets
Removing cylinder and pistons

NOTE When removing the cylinder head on the MY 2006-2007 models, pay attention to wire-supporting metal strips (1). Take care to properly refit them after completing the overhaul of the cylinders-pistons assembly.

Remove the cylinder head and rubber connecting rod between the cylinder and water pump as described in the relative paragraphs.

Carefully slide out the cylinder group being careful not to damage the elastic strips.

Work on one piston at a time to continue the removal.

First remove the 2 pistons which are at the MSP and rotate the drive shaft at 180° and disassemble the 2 remaining pistons.

Remove the elastic ring which blocks the plug to the piston.

Slide the plug off.

Slide the piston off only after having marked the ceiling with a marker to reassemble it properly.

Slide the gasket off between the cylinder and bedplate.
Cylinder revision

Check to be sure that enclosures show no sign of seizures with the pistons.
Check piston ovalization in the following way:

A) Measure the nominal diameter of each cylinder at a distance of 20 mm from the superior edge as indicated in the figure.
B) Perpendicularly repeat the measurements to the preceding ones.
C) Verify that the ovalization is inferior to 0.015 mm (wear limits).

In the case that not even one cylinder should pass this verification, substitute the entire block. If the block should be substituted and if necessary also substitute the pistons and elastic strips. The cylinder is marked with a letter which indicates the class it belongs to: A and B cylinders and A and B pistons exist which must be coupled with the same letter; the cylinder-piston coupling must be carried out between classes of the same origin (A cylinder-A piston; B cylinder-B piston).

Piston revision

Carefully clean the piston ceiling from carbon residues. Continue with a careful visual check of the piston; no signs of lines or other damage must appear.
Measure the diameter of the piston at the portion indicated in the direction perpendicular to the piston pin axle.
In the case of excessive wear of one of the pistons, substitute it. The piston should belong to the same class of the cylinder selection.
Piston-cylinder coupling

The cylinder-piston groups are furnished already coupled; if there should be an exchange of cylinders and pistons between them it would be necessary to proceed surveying coupling plays.

Measure the diameter of the (ND) pipe at 20 mm from the superior plane, as indicated on the sketch. The piston diameter must be measured at 8 mm from the shell base, in a perpendicular position to the piston pin axle. These measurements must be carried out at a stabilized temperature of 20°.

The play between piston and cylinder must fall between **0,038 e 0,067 mm**. Maximum wear limit permitted 0,10 mm.

Piston pin revision

Verify that the piston pins show no lines or bluish colours which indicate overheating.

Piston-pin coupling

The (S) play between piston pins and piston must be of **0,004÷0,012 mm** in case the limit is exceeded it is necessary to substitute the piston pin and piston. The limited wear permitted is **0,03 mm**.
Piston-pin connecting rod foot coupling

Play between piston pin and connecting rod foot must be of 0,015÷0,032 mm.

Maximum wear limit allowed 0,04 mm.

Segments

Verify the absence of lines and traces of shrinkage on each segment.

Verify that the edge of the segment is well defined and free in the segments.

The spare pistons are furnished complete with segments and piston pins.

Whenever segment wear is noticeable it is recommended to change the pistons as well.

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>Standard</th>
<th>Wear limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>SP 0,8</td>
<td>-0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,75</td>
</tr>
<tr>
<td>2°</td>
<td>SP 0,8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,75</td>
</tr>
<tr>
<td>Oil scraper</td>
<td>SP 1,5</td>
<td>-0,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,38</td>
</tr>
</tbody>
</table>

Segment-cylinder coupling

Introduce the 5 mm segment under the head plane being careful to position it well in “square” and to measure the distance between the two ends of the segment.

The maximum play allowed between the ends of the ring is the following for each segment:

SEGMENT N°1: 0,2 + 0,4 mm

Maximum wear limit allowed 0,6 mm

INTERMEDIATE SEGMENT : 0,2 + 0,4 mm

Maximum wear limit allowed 0,6 mm

OIL SCRAPER : 0,2 + 0,7 mm

Maximum wear limit allowed 1,0 mm
Cylinder and piston assembly
The segments must be assembled on the piston with the writing Ne Top turned upwards and by following the outline in the figure.
Oil the connecting rod foot and piston pin.
Assemble the internal ring on the piston
Insert the pistons complete with segments on the connecting rods with the arrow facing the exhaust
Insert the piston pins into the piston until beat.
Assemble the external rings.

⚠️ Before securing the piston pins with the blocking rings, cover the bedplate opening with a clean rag to avoid any pieces from falling into the oil cup. Always use new blocking rings.

Assemble a new gasket between the cylinder and bedplate.
Position the clamps onto the pistons in the direction shown in the sketch.
Oil cylinders and clamps.
Position the two pistons 1 and 4 at the MSP turning the drive shaft.
First insert the two pistons at the MSP, thus rotate the drive shaft at 180° to invert the piston positions and to insert the two remaining ones.
Insert the pistons by manually pushing down on the segments.
Proceed with maximum care since it concerns a very delicate procedure due to the fragility of the segments.
Make some turns with the unloaded drive shaft and check to be sure that the pistons move freely without force.

NOTE On the MY 2006-2007 models, refit wire-supporting metal strips (1) on the screws that fix the coolant connection to the cylinder.
CLUTCH MY 2004-2005

1 code 8000A2561 q.ty 7
2 code 8000A2562 q.ty 8
3 code 8000A2560 q.ty 2
4 code 8000A3379 q.ty 1
5 code 8000A3380 q.ty 1

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>8</td>
<td>140</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thread blockers Strong

| | | | |
|-------|-------|-------|
| OIL | Apply motor oil | SS | Apply silicone sealing |
| NO OIL| Do not apply neither oil nor other types of substances | HSC | Apply HSC Molikote |
| GR | Apply grease | M | Apply mastic for gaskets |
CLUTCH MY 2006-2007

1 code 8000A6917 q.ty 1
2 code 8000A6916 q.ty 8
3 code 8000A6918 q.ty 9
4 code 8000A6915 q.ty 1
5 code 8000A6922 q.ty 1
6 code 8000A6923 q.ty 1

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>8</td>
<td>140</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td>Strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OIL
Apply motor oil

NO OIL
Do not apply neither oil nor other types of substances

GR
Apply grease

SS
Apply silicone sealing

HSC
Apply HSC Molikote

M
Apply mastic for gaskets
The clutch release occurs using a postponing return group composed of a small thrust piston placed on the left side of the motor and operated by a hydraulic system. This small piston pushes a command rod which makes the disk pusher plate function.

Clutch disassembly

In order to carry out this function the following special tool is necessary:

Utensil n° 800079015

Remove the 11 screws which fasten the clutch cap to the bedplate.
Remove the clutch cap together with the gasket which will be substituted during reassembly.

Remove the 4 disk pusher plate (2) tightening screws (1) (6 for the MY 2006-2007 model) together with the relative springs.
Remove the disk pusher plate.

⚠️ To avoid damaging oil seal (1) (see figure on page 58), if the clutch rod should come out, be sure to refit it from the clutch control cylinder side (right side of the engine), with the lubrication groove facing the clutch.

Manually remove all of the attrition disks (3) that you can. Subsequently straighten the nut washer.

Unscrew the nut using tool n° 800079015 to hold the clutch hub still and remove it.
Remove the clutch block and then the separator (6) and the grazer washer (7).

Disassemble the clutch block following the sequence in the figure.
Clutch overhauling
Check the rod for straightness and wear.

Check the friction plates for wear. **The standard thickness is 3 mm**
Maximum allowed wear limit: **2.8 mm**.
No signs of burning, grooves or other damages are allowed.
Replace the whole plates group even if only one is damaged.

Put the plate on a table and check the deformation.

Measure the length “L” of the springs with a gauge.
The serviceability limit is **57.9 mm** for the MY 2005 and earlier models. For the MY 2006-2007 model the limit is **53 mm**.
Replace the springs exceeding the service limit.
Clutch reassembly for MY 2004-2005 vehicles
Reposition the thrust washer with the smaller diameter facing the engine. Fit the spacer, the roller cage, the clutch drum and the washer. Since the washer in front of the clutch drum is obtained by blanking, it has a sharp edge and a rounded edge. Fit the washer so that the rounded edge faces the engine.

⚠️ Assemble the clutch plate holder by fitting spring “5” first (see CLUTCH MY 2004-2005 diagram), with the smaller diameter facing the engine, and then part “4” (see CLUTCH MY 2004-2005 diagram). Subsequently fit the clutch plates, alternating the 9 lined plates with the 8 smooth plates, beginning with a lined plate with a lowered track.

⚠️ Warning - The first and last lined plates have a lowered track.

⚠️ It is recommended that a new safety washer and nut be used during reassembly.

Tighten the nut at 140 N·m using a medium thread-locking product and then bend the safety washer. Assemble the disk pusher plate tightening the screws with springs as 10 N·m. Substitute the cap gasket. Aline the centering pins. Position the cap and manually bring screws close. Tighten the screws at 8 N·m.
Clutch reassembly for MY 2006-2007 vehicles

Reposition the thrust washer with the smaller diameter facing the engine. Fit the spacer, the roller cage, the clutch drum and the washer. Since the washer in front of the clutch drum is obtained by blanking, it has a sharp edge and a rounded edge. Fit the washer so that the rounded edge faces the engine.

![Clutch plate holder assembly](image)

Assemble the clutch plate holder by fitting spring "6" first (see CLUTCH MY 2006-2007 diagram) with the smaller diameter facing the engine, and then part "5" (see CLUTCH MY 2006-2007 diagram).

Fit the clutch plates, alternating the ten lined plates with the nine smooth plates. Start with the lined plate having the smaller inner diameter.

![Clutch plates](image)

Warning - The 2006-2007 model fits three different types of lined plates.
Begin by fitting the plate with the smaller inside diameter (1), then fit the eight identical plates (2), inter-leaving them with the smooth plates, and finally add outer plate (3) with the larger lining cells.
Tighten the nut at 140 N·m using a medium thread-locking product and then bend the safety washer.

⚠️ It is recommended that a new safety washer and nut be used during reassembly.

Assemble the disk pusher plate tightening the screws with springs as 10 N·m.
Substitute the cap gasket.
Aline the centering pins.
Position the cap and manually bring screws close.
Tighten the screws at 8 N·m.
GEAR AND GEAR CONTROL

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>140</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>25 (M8)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **OIL**: Apply motor oil
- **NO OIL**: Do not apply neither oil nor other types of substances
- **GR**: Apply grease
- **SS**: Apply silicone sealing
- **HSC**: Apply HSC Molikote
- **M**: Apply mastic for gaskets
Disassembling gear group

Remove the clutch following the instructions in the relative paragraph.
Remove the clutch rod from the clutch end.
Remove the 6 tightening screws from the gear cap.
Using a rubber hammer, delicately beat on the primary shaft from the clutch end holding a hand on the gear cap until it moves from the bedplate.

Slide the gear group out.

⚠️ To avoid damaging oil seal (1) (see figure on page 58), it is essential to refit the clutch rod from the clutch control cylinder side (right side of the engine), with the lubrication groove facing the clutch.
Gear command
Disassemble the gear command group following the order shown in the figure. Place the various components in an orderly way so as to facilitate reassembling. Check each component for wear of irregular traces on its surface. Carefully check the following components.

Shift drum
Check the shift drum ("desmo"): no signs of wear on the grooves are allowed.
Fork pin - groove clearance for new parts: 0,15÷0,35 mm.
Wear limit: 0,65 mm.
Groove width of a new drum: 7,05÷7,15 mm
Wear limit: 7,35 mm.
The new fork pin diameter is equal to 6,8 ÷ 6,9 mm
Wear limit: 6,7 mm.
Verify the working clearance between the fork pin and the shift drum groove, measuring the dimensions with a gauge.
If the value exceeds the service limits, compare the standard value to choose the parts to be replaced.

Verify the gear locker pawl free movement.
Reassemble the various parts by acting in the opposite way.

Degrease accurately and apply MEDIUM THREAD BLOCKER to all the screws, before reassembly. Lock all the screws at a 8 N·m torque but the screw 1, needing a 25 N·m torque.
Primary and secondary shaft

![Image of engine components]

Check the two shafts separately so as to avoid confusion of similar components.

Place the components in such a way as to facilitate the correct positioning during reassembly.
Gear group revision

In order to carry out the following procedure the following special tool is necessary:

Motor simulation utensil n° 8A0094792

Disassemble the gear group from the motor and reassemble it on the special utensil n° 8A0094792 motor simulator being careful to tighten the pinion fixing nuts with the separator that simulates the clutch hub.

Check the condition of the front clutching teeth of the gears which must be in perfect shape and sharp edged. The neutral gears must rotate freely on their shafts.

All of the neutral gears must present a minimum axial play of 0.10 mm.

Verify the wear on the bearings present on the inside of the gear box. Verify the control quotas indicated on the sketch in the figure.

Gear selection forks

Visually inspect the gear selection forks to look for folds or other damage.

Every fork that appears damaged must be substituted because it can cause difficulty when inserting a gear and causes sudden uncoupling under load. Check the play of each fork using a thick meter in the groove of its gear. The play is above 0.7 mm substitute the gear or fork in relation to service limit of each part.

Gear groove limit
5,6 mm Primary
4,6 mm Secondary

Limite forcelle
4,65 mm Primary 5-6 gear
3,65 mm Secondary 1-2, 3-4 gear

The fork must be able to move without force. Grippage of the gears must flow without impediments and without excessive attritions.
Installation
To execute this operation you need the following special tools:

n° 8A0094792 gearbox tool

Reassemble the various parts by acting in the opposite way.
Install the 2 shafts on the n° 8A0094792 engine simulation tool.
Install a shift pedal and check the gearbox is correctly working.

Always install a new washer under the pinion at reassembly. Carefully degrease the threads before reassembly.
Tighten the pinion nut at 140 N·m using a strong thread blocker. Turn the security washer again so as to avoid the accidental unscrewing of the pinion nut.
All the gears must be inserted and uninserted without stumbling.
In case of stumbling, verify that the axial play has been correctly restored.
With a thick meter verify that each gearring, once inserted presents a fork-pit play equal to 0.2 ÷ 0.3 mm placing it on both ends of the coupling.
The fork must be free.
Assemble the gasket on the internal end.

Before inserting the gear group into the bedplate verify that a gear is inserted so as not to damage the neutral indicator switch.

⚠️ **Do not insert the gear group in neutral into the bedplate.**
Insert the clutch rod.
ELECTRICAL COMPONENTS

- **MY 2006-2007**
- **MY 2004-2005**

⚠️ **DO NOT** use non-resistive spark plugs.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>22</td>
<td>12</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td>Medium</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **OIL**
 - Apply motor oil
- **NO OIL**
 - Do not apply neither oil nor other types of substances
- **GR**
 - Apply grease
- **SS**
 - Apply silicone sealing
- **HSC**
 - Apply HSC Molikote
- **M**
 - Apply mastic for gaskets
Remove the pick-up from the phonic wheel.

Alternator
- **Removal:**
 Working on the left side of the motor, remove the three alternators and the stiffening stirrup tightening nuts.
 Slide the alternator out being careful not to let the rubber torsions fall.
- **Assembly:**
 Grease the torsions and O-Rings.
 Insert the pallets together with the torsions.
 Manually bring the screws together, thus tighten them at 25 Nm.

Starter motor
- **Removal:**
 Remove the two tightening screws.
 Slide the starter motor out, being careful not to damage the O-Rings on the shaft.
- **Assembly:**
 Reassemble the motor on the bedplate.
 Manually bring the two screws together, thus tighten them at the prescribed coupling.

⚠️ **DO NOT** use non-resistive spark plugs.
OIL PUMP

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

- **OIL**
 - Apply motor oil

- **NO OIL**
 - Do not apply neither oil nor other types of substances

- **GR**
 - Apply grease

- **SS**
 - Apply silicone sealing

- **HSC**
 - Apply HSC Molikote

- **M**
 - Apply mastic for gaskets
Remove the clutch and the gear as described in the relative paragraphs.
Remove the seeeger and the oil pump gearing.
Remove the 3 tightening screws.
Push the oil pump shaft from the gear end and slide the oil pump body from the clutch end.
To disassemble the oil pump remove the external screws.
Separate the various components as indicated in the figure.

Visually check the components to be sure that there are no lines of deformations.
In case one of the pieces should be damaged, substitute it with a new one.
Reassemble the oil pump in the reverse order of assembly.
Tighten the 3 screws at 8 N·m with MEDIUM THREAD BLOCKER carefully degreasing them before reassembly.
WATER PUMP

MY 2004-2005

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

OIL
- Apply motor oil

NO OIL
- Do not apply neither oil nor other types of substances

GR
- Apply grease

SS
- Apply silicone sealing

HSC
- Apply HSC Molikote

M
- Apply mastic for gaskets
Removing water pump

⚠ Work with cold motor.

⚠ Drain liquid.

A) Loosen the clamp and remove the coupling from the cylinder group, being careful not to damage it.

B) Remove the screws (1) which fasten the pump body to the bedplate.

C) Slide the pump out of the bedplate.

Disassembling water pump pieces (MY 2004-2005)

After having extracted the pump from the bedplate disassemble the pump as follows:

A) Remove the tightening screws from the pump body (1) and separate the latter from the cap.

⚠ Be careful no to let the two centering bushes fall (9).

B) Remove the two O-Rings (2)
C) Remove the two seeger rings (3)
D) Take the impeller out (4) from its shaft (5)
E) Separate the impeller (4) from its shaft (5) by unscrewing.

⚠ During the following procedure use the necessary precautions so as not to get burned.
A) Heat the pump body (1) at 120°C.
B) Remove the two bearings (6) with its relative space (7).

C) Reheat in oven at 120°C
D) Take the ring out (8)

Disassembling water pump pieces (MY 2006-2007)
After having extracted the pump from the bedplate disassemble the pump as follows:
A) Remove the tightening screws from the pump body (1) and separate the latter from the cap.
B) Remove the two O-Rings (2)
C) Remove the two seeger rings (3)
D) Unscrew impeller (4)
E) Remove shaft (5) with the first bearing (6).

⚠️ During the following procedure use the necessary precautions so as not to get burned.
A) Heat the pump body (1) at 120° C
B) Remove the second bearing (7)
C) Remove the two oil seals (8) and (9).

Revision of water pump pieces (all models)
Verify that each component does not show any wear signs.
In particular verify the flowness of the bearings and the O-Ring condition
Verify that the impeller does not show signs of giving away or slits.
Verify the absence of excessive play between the impeller shaft and bearings.
In case of wear of one of the components substitute it.
Reassembling water pump parts (MY 2004-2005)

⚠️ During the following procedure use the necessary precautions so as not to get burned

A) Heat the pump body (1) to 120°C
B) Insert the ring (8). Always use a new ring carefully degreased in alcohol.
C) Insert the two bearings (6) with its relative separators
D) After having waited for the pump body to cool (1), insert the impeller (4) complete with its shaft (5)
E) Insert the two seeger rings (3)
F) Insert the two O-Rings (2)

⚠️ Be careful not to let the two centering bushes fall (9).

G) Insert the two pump body tightening screws (1) and unite the latter to its cap.

Reassembling water pump parts (MY 2006-2007)

⚠️ During the following procedure use the necessary precautions so as not to get burned

A) Position pump casing (1) on the special tool to allow the insertion of the shaft and then heat it to 120°C.
B) Fit the oil seal on the engine side (8). Always fit new rings after carefully degreasing them with alcohol.
C) Fit the first bearing (7).
D) Fit the tip on shaft (5) and then insert the shaft into its housing.
E) Fit the second bearing (6).
F) Lock the assembly in place by fitting Seeger ring (3). Rotate the pump 180 degrees.

G) Fit the second outer oil seal (9).
H) Screw the tip off the shaft.
I) Turn in impeller (4).
L) Insert the two Seeger rings (2)

M) Insert the two pump body tightening screws (1) and unite the latter to its cap.

Water pump reassembly (all models)
A) Insert the pump on the bedplate being very careful not to damage the O-Ring on the pump body
B) Insert the screws (1) which fix the pump body onto the bedplate
C) Install the coupling with its clamp onto the cylinder group, being careful not to damage it.
STARTING

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nm</td>
<td>10</td>
<td>55</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td>medium</td>
<td>strong</td>
<td>medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OIL
- Apply motor oil

NO OIL
- Do not apply neither oil nor other types of substances

GR
- Apply grease

SS
- Apply silicone sealing

HSC
- Apply HSC Molikote

M
- Apply mastic for gaskets
Free wheel starting

Remove the clutch and gear indicated in the relative paragraphs.
Slide out the intermediate starting gear pin, first disassemble the pin-blockage plate.
Slide the intermediate gear.
Slide the alternator flange and generator shaft out.
If necessary disassemble the male torsion from the generator using tool 800094794 to unscrew the nut.
Disassemble the generator command shaft using the appropriate 800094795 blockage tool to unscrew the screws.
Disassemble and verify the free wheel state.
Reassemble the free wheel with the seeger turned towards the inside; to facilitate the procedure, insert the part where the seeger is opened last. Verify that the free wheel only turns clockwise.
Assemble the group on the tool 800094795 and block the screw with a dynamometric key at 25 N·m and MEDIUM THREAD BLOCKER.
Reassemble the male torsion joint on the generator tightening nut with STRONG THREAD BLOCKER at 55 N·m.
Turn the oil drainage hole downwards present on the flange.
Tighten the screws with MEDIUM THREAD BLOCKER at 10 N·m.
Insert the starting gear with the smaller toothing turned inwards from the gear end.
Insert the pin from the clutch end.
Assemble the pin-blockage plate fastening the screw with MEDIUM THREAD BLOCKER.

Neutral switch

This component does not call for maintenance. In the case of a malfunction, substitute the switch. When reassembling it insert the switch with the help of a tube key and tighten at 10 N·m.
MOTOR SHAFT

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A*</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Thread blockers</td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

* See tightening notes

<table>
<thead>
<tr>
<th>OIL</th>
<th>Apply motor oil</th>
<th>SS</th>
<th>Apply silicone sealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO OIL</td>
<td>Do not apply neither oil nor other types of substances</td>
<td>HSC</td>
<td>Apply HSC Molikote</td>
</tr>
<tr>
<td>GR</td>
<td>Apply grease</td>
<td>M</td>
<td>Apply mastic for gaskets</td>
</tr>
</tbody>
</table>
BEDPLATE

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F*</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>10+60°</td>
<td>22</td>
<td>8</td>
<td>14</td>
<td>25</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thread blockers

- Medium

OIL
- Apply motor oil

NO OIL
- Do not apply neither oil nor other types of substances

GR
- Apply grease

SS
- Apply silicone sealing

HSC
- Apply HSC Molikote

M
- Apply mastic for gaskets

* See text.
CAPS

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Thread blockers</td>
<td>Medium</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **OIL**: Apply motor oil
- **NO OIL**: Do not apply neither oil nor other types of substances
- **GR**: Apply grease
- **SS**: Apply silicone sealing
- **HSC**: Apply HSC Molikote
- **M**: Apply mastic for gaskets
Oil cup

Remove the oil cup by means of the 6 mm tightening screws. Always substitute the gasket during reassembly. Check to be sure that the oil inlet filter is integral with no cracks or slits; clean it with compressed air at a low pressure blown from the inside towards the outside. To remove the oil inlet filter unscrew the tightening screws. At reassembling tighten the 2 screws at 8 N·m and block them with MEDIUM THREAD BLOCKER after having carefully degreased them. Position the gasket and manually bring the screws closer. Tighten the cup screws at 10 N·m.
Disassembly
Remove the oil filter and the heat exchanger with relative bearing.
Remove as follows as indicated in the relative paragraphs:
 A) The head
 B) The cylinder group
 C) The pistons
 D) The clutch
 E) The gear

Remove:
F) The size 6 screws including the one for the blow-by cap.
 NOTE
 Remember to unscrew the screw inside the carter indicated in the picture at the right.

G) The size 8 screws.

NOTE
All the screws are of the same length or visually different; it is therefore impossible to confuse them during reassembly.
H) Separate the two carters (1 and 2) by manipulating the protrusions.

I) If necessary remove the bearings (3).

L) Slide the motor shaft out.
 In the event that the bushings should be temporarily removed (4) it is a good idea to identify the bearing number and its carter with a number using a marker.
 For example the bushing removed from the n°1 bearing of the superior carter (starting from the left) will be identified by the mark S1.
 For the couplings refer to the groups they belong to shown on the chart.

<table>
<thead>
<tr>
<th>SELECTION TABLE FOR F4 BEARINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BENCH PIN DIAMETER</td>
</tr>
<tr>
<td>A 34,981 34,988</td>
</tr>
<tr>
<td>B 34,989 34,997</td>
</tr>
<tr>
<td>FUNCTIONING PLAY 0,012/0,038</td>
</tr>
</tbody>
</table>
Revision
Once you have disassembled the motor shaft and in case there should be any doubt substitute the bench bushings as well as the connecting rod.
Verify the motor shaft wear tolerance.
The function play of the bench bearings must be between 0,012–0,038 mm.
Service limit is 0,06 mm.
The function play of the connecting rod bearing must be between 0,036–0,061 mm.
With a service limit of 0,08 mm.

Reassembly
Carefully degrease and clean from any paste residues Position the bushings into the carter without lubricating.

After having positioned them put oil on each bush.
Laterally lubricate the n° 5 support as it carries out the function of the motor shaft centering.

Put the new cap on the right side after having put the silicone type paste on the cap's surface, between cap and carter bearing.

Assembly the motor shaft.
Verify with a thick meter that the motor shaft has an axial play of 0.2 mm as regards the bench bearings. In case there should be different values contact the manufacturer.

Reassemble the bearing on the inferior semi carter with the locks facing each other and turned inward the bedplate.

Be sure that the centering bushes are installed on the inferior semi carter. Spread a layer of the 1215 THREEBOND type garnish on the stroke points of the two semi carters. Couple the two semi carters carefully beating them with a plastic hammer until completely closed.
Insert the 12 size 8 screws manually manipulating them thus tightening them to the coupling at 25 N·m. Insert the remaining M6 screws manually manipulating them and tighten them to the coupling at 10 N·m.

⚠️ **Tighten all the screws inversely to the order they were disassembled.**

Install the heat exchanger with the O-Ring and lock the support screws at a 10 N·m torque, the exchanger aluminium screw at a 15 N·m torque. Always replace the aluminium seal washer at reassembly.
Disassembling connecting rod
Remove the driveshaft following the suggested procedure.
Position the shaft with the connecting rod downwards.
Work on each connecting rod separately.
Loosen the two screws that tighten the foot of the connecting rod and the head of the rod.
Remove the two screws that sustain the connecting rod stem. Move the two motor drive shaft parts away.

NOTE Reassemble each connecting rod before working on the next one.

Removing semi bearings
Disassemble the connecting rod following the suggested procedure.
Unscrew the screws and remove the semi bearings from the foot and head of the connecting rod.

Coupling semi bearings-connecting rod pin
If no substitutions have been made it is sufficient to verify the connecting rod measurement and its pins and refer to the chart included, choose the semi bearings according to the colour.
The measurement has to be carried out on the principal axle of the stem, after having tightened at 35 N·m.
If substitution of one or more parts is necessary, it is sufficient to follow the indications of the letter indicating the class that the connecting rod and bushing belong to, indicated on them.

Assembling semi bearings
Screw the semi bearing to the foot of the connecting rod and to the head.
• Degrease the screws and the connecting rod.
• Apply oil only to the internal thread.
• Tighten, ensuring that the screw is elongated by 0.20 to 0.22 mm with a minimum torque of 50 Nom.
• Only use worked screws with measuring area supplied as spares.

Always use new screws, even with the used connecting rod.
Ensure that the comparator feelers only come into contact with the worked surfaces.

<table>
<thead>
<tr>
<th>SELECTION TABLE FOR F4 CONNECTING ROD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTIONING PLAY 0.036/0.061</td>
</tr>
<tr>
<td>CONNECTING ROD HEAD DIAMETER</td>
</tr>
<tr>
<td>A 38,114 38,122 B 38,123 38,130</td>
</tr>
<tr>
<td>CONNECTING ROD PIN DIAMETER</td>
</tr>
<tr>
<td>A 34,981 34,988 BLUE 1,540/1,545</td>
</tr>
<tr>
<td>B 34,989 34,997 RED 1,536/1,541</td>
</tr>
<tr>
<td>FUNCTIONING PLAY 0.036/0.061</td>
</tr>
</tbody>
</table>

NOTE Worked surfaces to be measured
Check and placement of distribution chain
At each motor revision verify the wear state of each transmission distribution component. If the gear teeth appear to be very worn substitute each piece. Substitute the chain at the foreseen mileage (see page 5).

⚠️ In case wear should result beyond the permitted allowance even of just one of the distribution components, check them all and if necessary substitute them.

Rotate the drive shaft until the pellet on the phonic wheel tooth coincides with the notch on the bedplate, as shown in the following picture.
Attention: the drive shaft in this position is NOT in the MSP position.

Fit the distribution chain on the intermediate gear.
Position the intermediate gear being careful that the pellet on the gear corresponds with the pellet on the bedplate, being careful that the drive shaft has not moved from the position priorly described.
Insert the intermediate gear rotation pin and tighten it with the relative seeger.
Without rotating the drive shaft check again to be sure that the pellet on the phonic wheel corresponds to the notch on the bedplate.
At this point, rotate the drive shaft and verify the correct teeth gripping.

Attention: The relative pellet position will repeat itself only after a few rotations of the drive shaft.
Substitute oil filter

Take an oil filter out of (black version) the new motor oil filter kit (Part code n° 8000A3702) of new furnishing. **Exclusively us MV Agusta** components.

Take the new motor oil filter gasket out of the oil filter kit (Part code N° 8000A3702) and fit it on the filer as shown in the figure.

⚠️ **WARNING: Be sure to use a new seal.**

Slide the seal until it comes into contact with the rear oil filter ring (see figure). Before fitting the filter, lubricate the seal.

Fit the filter into its seat. Manually rotate the filter until the seal lightly touches the worked surface. Tighten the filter using the appropriate tool, code 99010 and a dynamometric key. **Tightening couple: 24 N·m.**

Once the filter has been tightened, Take the new motor oil filter clamp and the relative screw out of the oil filter kit of new furnishing. (Part. Cod. N° 8000A3702).

⚠️ **WARNING: Be sure to use a new clp.**

Fit the clamp and slide it until it touches the rear oil filter ring.

Place the clamp fastener 1 mm from the screw on the crankcase. Turn the clamp screw until the clamp comes into contact with the oil filter. Make sure there is no clearance between the clamp-seal assembly and the filter. Mark the screwing point on the screw as well as on the clamp with a marker. Carry out the final tightening of the screws by making 2 turns and 1/2 beyond the already obtained position (see fig.).
After completing the operation, ensure that the distance between the screw and the clamp fastener is 1 to 1.5 mm (see figure). Run the engine for 3 minutes and then check that no oil is leaking from the filter.

⚠️ WARNING: Do not use the oil filter as a gripping or support point.